NCERT Solutions Class 12 Maths Chapter 1 Exercise 1.1

Question 1:

Determine whether each of the following relations are reflexive, symmetric and transitive.

(i) Relation R in the set $A = \{1, 2, 3, \dots, 13, 14\}$ defined as

$$R = \{(x, y) : 3x - y = 0\}$$

- (ii) Relation R in the set of N natural numbers defined as $R = \{(x, y) : y = x + 5 \text{ and } x < 4\}$
- (iii) Relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as $R = \{(x, y) : y \text{ is divisible by } x\}$
- (iv) Relation R in the set of Z integers defined as
 - $R = \{(x, y) : x y \text{ is an integer}\}$
- (v) Relation R in the set of human beings in a town at a particular time given by
 - (a) $R = \{(x, y) : x \text{ and } y \text{ work at the same place}\}$
 - (b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality} \}$
 - (c) $R = \{(x, y) : x \text{ is exactly 7cm taller than } y\}$
 - (d) $R = \{(x, y) : x \text{ is wife of } y\}$
 - (e) $R = \{(x, y) : x \text{ is father of } y\}$

Solution:

(i) $R = \{(1,3), (2,6), (3,9), (4,12)\}$

R is not reflexive because (1,1), (2,2)... and $(14,14) \notin R$. R is not symmetric because $(1,3) \in R$, but $(3,1) \notin R$.[since $3(3) \neq 0$]. R is not transitive because $(1,3), (3,9) \in R$, but $(1,9) \notin R$.[$3(1)-9 \neq 0$]. Hence, R is neither reflexive nor symmetric nor transitive.

(ii) $R = \{(1,6), (2,7), (3,8)\}$

R is not reflexive because $(1,1) \notin R$.

R is not symmetric because $(1,6) \in R$ but $(6,1) \notin R$. R is not transitive because there isn't any ordered pair in R such that $(x,y), (y,z) \in R$, so $(x,z) \notin R$.

Hence, R is neither reflexive nor symmetric nor transitive.

(iii) $R = \{(x, y) : y \text{ is divisible by } x\}$ We know that any number other than 0 is divisible by itself. Thus, $(x, x) \in R$ So, R is reflexive. (2,4) ∈ R [because 4 is divisible by 2]
But (4,2) ∉ R [since 2 is not divisible by 4]
So, R is not symmetric.
Let (x, y) and (y,z) ∈ R. So, y is divisible by x and z is divisible by y.
So, z is divisible by x ⇒ (x,z) ∈ R
So, R is transitive.
So, R is reflexive and transitive but not symmetric.

(iv) $R = \{(x, y) : x - y \text{ is an integer}\}$

For $x \in Z$, $(x,x) \notin R$ because x-x=0 is an integer. So, R is reflexive. For, $x, y \in Z$, if $x, y \in R$, then x-y is an integer $\Rightarrow (y-x)$ is an integer. So, $(y,x) \in R$ So, R is symmetric. Let (x, y) and $(y, z) \in R$, where $x, y, z \in Z$. $\Rightarrow (x-y)$ and (y-z) are integers. $\Rightarrow x-z=(x-y)+(y-z)$ is an integer. So, R is transitive.

So, R is reflexive, symmetric and transitive.

(v)

a) R = {(x, y) : x and y work at the same place}
R is reflexive because (x, x) ∈ R
R is symmetric because ,
If (x, y) ∈ R, then x and y work at the same place and y and x also work at the same place. (y, x) ∈ R.
R is transitive because,

Let $(x, y), (y, z) \in \mathbb{R}$

x and \mathcal{Y} work at the same place and \mathcal{Y} and z work at the same place.

Then, x and z also works at the same place. $(x, z) \in R$. Hence, R is reflexive, symmetric and transitive.

b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality} \}$ R is reflexive because $(x, x) \in R$ R is symmetric because, If $(x, y) \in R$, then x and y live in the same locality and y and x also live in the same locality $(y, x) \in R$. R is transitive because, Let $(x, y), (y, z) \in R$

x and Y live in the same locality and Y and z live in the same locality.

Then x and z also live in the same locality. $(x, z) \in R$. Hence, R is reflexive, symmetric and transitive.

c) $R = \{(x, y) : x \text{ is exactly 7cm taller than } y\}$ R is not reflexive because $(x, x) \notin R$. R is not symmetric because, If $(x, y) \in R$, then x is exactly 7cm taller than y and y is clearly not taller than x $(y, x) \notin R$. R is not transitive because, Let $(x, y), (y, z) \in R$

x is exactly 7cm taller than Y and Y is exactly 7cm taller than z.

Then x is exactly 14*cm* taller than z. $(x, z) \notin \mathbb{R}$ Hence, R is neither reflexive nor symmetric nor transitive.

d) $R = \{(x, y) : x \text{ is wife of } y\}$

R is not reflexive because $(x, x) \notin R$

R is not symmetric because,

Let $(x, y) \in R$, x is the wife of y and y is not the wife of x. $(y, x) \notin R$. R is not transitive because,

```
Let (x, y), (y, z) \in \mathbb{R}
```

x is wife of y and y is wife of z, which is not possible.

 $(x,z) \notin R$

Hence, R is neither reflexive nor symmetric nor transitive.

e) $R = \{(x, y) : x \text{ is father of } y\}$

R is not reflexive because $(x, x) \notin R$.

R is not symmetric because,

Let $(x, y) \in R$, x is the father of y and y is not the father of x. $(y, x) \notin R$. R is not transitive because,

Let $(x, y), (y, z) \in \mathbb{R}$

x is father of Y and Y is father of z, x is not father of $z.(x,z) \notin R$. Hence, R is neither reflexive nor symmetric nor transitive.

Question 2:

Show that the relation R in the set R of real numbers, defined as $R = \{(a,b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

Solution:

 $R = \left\{ (a,b) : a \le b^2 \right\}$ $\left(\frac{1}{2}, \frac{1}{2}\right) \notin R \quad \text{because } \frac{1}{2} > \left(\frac{1}{2}\right)^2$

 \therefore R is not reflexive.

 $(1,4) \in R$ as 1 < 4. But 4 is not less than 1^2 . $(4,1) \notin R$

 \therefore R is not symmetric.

 $(3,2)(2,1.5) \in R$ [Because $3 < 2^2 = 4$ and $2 < (1.5)^2 = 2.25$] $(3,1.5) \notin R$

 \therefore R is not transitive.

R is neither reflective nor symmetric nor transitive.

Question 3:

Check whether the relation R defined in the set $\{1,2,3,4,5,6\}$ as $R = \{(a,b): b = a+1\}$ is reflexive, symmetric or transitive.

Solution:

 $A = \{1, 2, 3, 4, 5, 6\}$ $R = \{(a, b) : b = a + 1\}$ $R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)\}$

 $(a,a) \notin R, a \in A$ $(1,1), (2,2), (3,3), (4,4), (5,5) \notin R$ \therefore R is not reflexive.

 $(1,2) \in R$, but $(2,1) \notin R$

 \therefore R is not symmetric.

 $(1,2),(2,3) \in R$ $(1,3) \notin R$ \therefore R is not transitive.

R is neither reflective nor symmetric nor transitive.

Question 4:

Show that the relation R in R defined as $R = \{(a,b): a \le b\}$ is reflexive and transitive, but not symmetric.

Solution:

 $R = \{(a,b) : a \le b\}$ $(a,a) \in R$ $\therefore \text{ R is reflexive.}$

 $(2,4) \in R \text{ (as } 2 < 4)$ $(4,2) \notin R \text{ (as } 4>2)$ $\therefore \text{ R is not symmetric.}$

 $(a,b), (b,c) \in R$ $a \le b$ and $b \le c$ $\Rightarrow a \le c$ $\Rightarrow (a,c) \in R$ \therefore R is transitive.

R is reflexive and transitive but not symmetric.

Question 5:

Check whether the relation R in R defined as $R = \{(a,b): a \le b^3\}$ is reflexive, symmetric or transitive.

Solution:

 $R = \left\{ \left(a, b\right) : a \le b^3 \right\}$ $\left(\frac{1}{2}, \frac{1}{2}\right) \notin R, \text{ since } \frac{1}{2} > \left(\frac{1}{2}\right)^3$ $\therefore \text{ R is not reflexive.}$

 $(1,2) \in R(as \ 1 < 2^3 = 8)$ $(2,1) \notin R(as \ 2^3 > 1 = 8)$ $\therefore R \text{ is not symmetric.}$

$$\left(3,\frac{3}{2}\right), \left(\frac{3}{2},\frac{6}{5}\right) \in R$$
, since $3 < \left(\frac{3}{2}\right)^3$ and $\frac{2}{3} < \left(\frac{6}{2}\right)^3$
 $\left(3,\frac{6}{5}\right) \notin R$ $3 > \left(\frac{6}{5}\right)^3$
 \therefore R is not transitive.

R is neither reflexive nor symmetric nor transitive.

Question 6:

Show that the relation R in the set $\{1,2,3\}$ given by $R = \{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

Solution:

 $A = \{1, 2, 3\}$ $R = \{(1, 2), (2, 1)\}$ $(1, 1), (2, 2), (3, 3) \notin R$ $\therefore \text{ R is not reflexive.}$ $(1, 2) \in R \text{ and } (2, 1) \in R$ $\therefore \text{ R is symmetric.}$

 $(1,2) \in R$ and $(2,1) \in R$ $(1,1) \in R$ \therefore R is not transitive.

R is symmetric, but not reflexive or transitive.

Question 7:

Show that the relation R in the set A of all books in a library of a college, given by $R = \{(x, y) : x \text{ and } y \text{ have same number of pages}\}$ is an equivalence relation.

Solution:

 $R = \{(x, y) : x \text{ and } y \text{ have same number of pages} \}$

R is reflexive since $(x, x) \in R$ as x and x have same number of pages.

 \therefore R is reflexive.

 $(x, y) \in R$

x and *y* have same number of pages and *y* and *x* have same number of pages $(y, x) \in R$ \therefore R is symmetric.

 $(x, y) \in R, (y, z) \in R$

x and y have same number of pages, y and z have same number of pages. Then x and z have same number of pages.

 $(x,z) \in R$

 \therefore R is transitive.

R is an equivalence relation.

Question 8:

Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a - b| \text{ is even}\}$ is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.

Solution:

 $a \in A$ |a-a| = 0 (which is even)

 \therefore R is reflective.

 $(a,b) \in R$ $\Rightarrow |a-b| \text{ [is even]}$ $\Rightarrow |-(a-b)| = |b-a| \text{ [is even]}$ $(b,a) \in R$ \therefore R is symmetric.

 $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow |a-b|_{is \text{ even and }} |b-c|_{is \text{ even}}$ $\Rightarrow (a-b)_{is \text{ even and }} (b-c)_{is \text{ even}}$ $\Rightarrow (a-c) = (a+b) + (b-c)_{is \text{ even}}$ $\Rightarrow |a-b| \text{ is even}$ $\Rightarrow (a,c) \in R$ $\therefore \text{ R is transitive.}$

R is an equivalence relation.

All elements of $\{1,3,5\}$ are related to each other because they are all odd. So, the modulus of the difference between any two elements is even.

Similarly, all elements $\{2,4\}$ are related to each other because they are all even.

No element of $\{1,3,5\}$ is related to any elements of $\{2,4\}$ as all elements of $\{1,3,5\}$ are odd and all elements of $\{2,4\}$ are even. So, the modulus of the difference between the two elements will not be even.

Question 9:

Show that each of the relation R in the set $A = \{x \in \mathbb{Z} : 0 \le x \le 12\}$, given by

i. $R = \{(a,b): |a-b| \text{ is a mutiple of } 4\}$

ii. $R = \{(a,b) : a = b\}$

Is an equivalence relation. Find the set of all elements related to 1 in each case.

Solution:

$$A = \{x \in Z : 0 \le x \le 12\} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

i.
$$R = \{(a, b) : |a - b| \text{ is a mutiple of } 4\}$$
$$a \in A, (a, a) \in R$$
$$\therefore \text{ R is reflexive.} \qquad [|a - a| = 0 \text{ is a multiple of } 4]$$

 $(a,b) \in R \Rightarrow |a-b|$ [is a multiple of 4] $\Rightarrow |-(a-b)| = |b-a|$ [is a multiple of 4] $(b,a) \in R$ \therefore R is symmetric.

$$(a,b) \in R$$
 and $(b,c) \in R$
 $\Rightarrow |a-b|$ is a multiple of 4 and $|b-c|$ is a multiple of 4
 $\Rightarrow (a-b)$ is a multiple of 4 and $(b-c)$ is a multiple of 4
 $\Rightarrow (a-c) = (a-b) + (b-c)$ is a multiple of 4
 $\Rightarrow |a-c|$ is a multiple of 4

 $\Rightarrow (a,c) \in R$ $\therefore \text{ R is transitive.}$ R is an equivalence relation.

The set of elements related to 1 is $\{1,5,9\}$ as |1-1| = 0 is a multiple of 4. |5-1| = 4 is a multiple of 4. |9-1| = 8 is a multiple of 4.

ii.
$$R = \{(a,b) : a = b\}$$
$$a \in A, (a,a) \in R \quad [since a=a]$$
$$\therefore R \text{ is reflective.}$$

$$(a,b) \in R$$

 $\Rightarrow a = b$
 $\Rightarrow b = a$
 $\Rightarrow (b,a) \in R$
 \therefore R is symmetric.

$$(a,b) \in R \text{ and } (b,c) \in \mathbb{R}$$

 $\Rightarrow a = b \text{ and } b = c$
 $\Rightarrow a = c$
 $\Rightarrow (a,c) \in R$
 \therefore R is transitive.

R is an equivalence relation.

The set of elements related to 1 is $\{1\}$.

Question 10:

Give an example of a relation, which is

- i. Symmetric but neither reflexive nor transitive.
- ii. Transitive but neither reflexive nor symmetric.
- iii. Reflexive and symmetric but not transitive.
- iv. Reflexive and transitive but not symmetric.
- v. Symmetric and transitive but not reflexive.

Solution:

i.

$$A = \{5, 6, 7\}$$

$$R = \{(5, 6), (6, 5)\}$$

(5,5), (6,6), (7,7) $\notin R$
R is not reflexive as $(5,5), (6,6), (7,7) \notin R$
(5,6), (6,5) $\in R$ and (6,5) $\in R$, R is symmetric.
 $\Rightarrow (5,6), (6,5) \in R$, but $(5,5) \notin R$
 \therefore R is not transitive.
Relation R is symmetric but not reflexive or transitive.

ii. $R = \{(a,b) : a < b\}$

 $a \in R, (a, a) \notin R$ [since *a* cannot be less than itself] R is not reflexive. $(1,2) \in R(as 1 < 2)$ But 2 is not less than 1 $\therefore (2,1) \notin R$ R is not symmetric. $(a,b), (b,c) \in R$ $\Rightarrow a < b$ and b < c $\Rightarrow a < c$ $\Rightarrow (a,c) \in R$

 \therefore R is transitive.

Relation R is transitive but not reflexive and symmetric.

iii. $A = \{4, 6, 8\}$ $A = \{(4, 4), (6, 6), (8, 8), (4, 6), (6, 8), (8, 6)\}$

R is reflexive since $a \in A, (a, a) \in R$

R is symmetric since $(a, b) \in R$

$$\Rightarrow (b,a) \in R \quad for a, b \in R$$

R is not transitive since $(4,6), (6,8) \in R, but (4,8) \notin R$ R is reflexive and symmetric but not transitive.

iv.
$$R = \{(a,b) : a^3 > b^3\}$$
$$(a,a) \in R$$
$$\therefore \text{ R is reflexive.}$$
$$(2,1) \in R$$
$$But(1,2) \notin R$$

 \therefore R is not symmetric.

$$(a,b),(b,c) \in R$$

 $\Rightarrow a^3 \ge b^3 \text{ and } b^3 < c^3$
 $\Rightarrow a^3 < c^3$
 $\Rightarrow (a,c) \in R$
 $\therefore R$ is transitive.
R is reflexive and transitive but not symmetric

v. Let
$$A = \{-5, -6\}$$

 $R = \{(-5, -6), (-6, -5), (-5, -5)\}$
R is not reflexive as $(-6, -6) \notin R$
 $(-5, -6), (-6, -5) \in R$
R is symmetric.
 $(-5, -6), (-6, -5) \in R$
 $(-5, -5) \in R$
R is transitive.
 \therefore R is symmetric and transitive but not reflexive.

Question 11:

Show that the relation R in the set A of points in a plane given by

 $R = \{(P,Q) : \text{Distance of the point P from the origin is same as the distance of the point Q from the origin}\}$

, is an equivalence relation. Further, show that the set of all points related to a point $P \neq (0,0)$ is the circle passing through P with origin as centre.

Solution:

 $R = \{(P,Q) : \text{Distance of the point P from the origin is same as the distance of the point Q from the origin}\}$

Clearly, $(P, P) \in R$ \therefore R is reflexive. $(P,Q) \in R$ Clearly R is symmetric. $(P,Q), (Q,S) \in R$ \Rightarrow The distance of P and

 \Rightarrow The distance of *P* and *Q* from the origin is the same and also, the distance of *Q* and *S* from the origin is the same.

 \Rightarrow The distance of *P* and *S* from the origin is the same.

 $(P,S) \in R$

 \therefore R is transitive.

R is an equivalence relation.

The set of points related to $P \neq (0,0)$ will be those points whose distance from origin is same as distance of P from the origin.

Set of points forms a circle with the centre as origin and this circle passes through P.

Question 12:

Show that the relation R in the set A of all triangles as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$, is an equivalence relation. Consider three right angle triangles T_1 with sides 3,4,5, T_2 with sides 5,12,13 and T_3 with sides 6,8,10. Which triangle among T_1, T_2, T_3 are related?

Solution:

 $R = \{(T_1, T_2) : T_1 \text{ is similar to } T_2\}$ R is reflexive since every triangle is similar to itself.

If $(T_1, T_2) \in R$, then T_1 is similar to T_2 . T_2 is similar to T_1 . $\Rightarrow (T_2, T_1) \in R$ \therefore R is symmetric.

 $(T_1,T_2),(T_2,T_3) \in \mathbb{R}$

 T_1 is similar to T_2 and T_2 is similar to T_3 .

 $\therefore T_{1 \text{ is similar to }} T_{3}.$ $\Rightarrow (T_{1}, T_{3}) \in R$ $\therefore \text{ R is transitive.}$ $\frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \left(\frac{1}{2}\right)$

 \therefore Corresponding sides of triangles T_1 and T_3 are in the same ratio. Triangle T_1 is similar to triangle T_3 . Hence, T_1 is related to T_3 .

Question 13:

Show that the relation R in the set A of all polygons as $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4*and*5?

Solution:

 $R = \{(P_1, P_2) : P_1 \text{ and } P_2 \text{ have same number of sides}\}$ $(P_1, P_2) \in R \text{ as same polygon has same number of sides.}$ $\therefore \text{ R is reflexive.}$ $(P_1, P_2) \in R$ $\Rightarrow P_1 \text{ and } P_2 \text{ have same number of sides.}$ $\Rightarrow P_2 \text{ and } P_1 \text{ have same number of sides.}$ $\Rightarrow (P_2, P_1) \in R$ $\therefore \text{ R is symmetric.}$

 $(P_1, P_2), (P_2, P_3) \in R$ $\Rightarrow P_1$ and P_2 have same number of sides. P_2 and P_3 have same number of sides. $\Rightarrow P_1$ and P_3 have same number of sides. $\Rightarrow (P_1, P_3) \in R$ \therefore R is transitive. R is an equivalence relation.

The elements in A related to right-angled triangle (T) with sides 3,4,5 are those polygons which have three sides.

Set of all elements in a related to triangle T is the set of all triangles.

Question 14:

Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

Solution:

 $R = \{(L_1, L_2) : L_1 \text{ is parallel to } L_2\}$ R is reflexive as any line L_1 is parallel to itself i.e., $(L_1, L_2) \in R$ If $(L_1, L_2) \in R$, then $\Rightarrow L_1$ is parallel to L_2 . $\Rightarrow L_2$ is parallel to L_1 . $\Rightarrow (L_2, L_1) \in R$ \therefore R is symmetric.

 $(L_1, L_2), (L_2, L_3) \in R$ $\Rightarrow L_1$ is parallel to L_2 $\Rightarrow L_2$ is parallel to L_3 $\therefore L_1$ is parallel to L_3 . $\Rightarrow (L_1, L_3) \in R$ $\therefore \mathbb{R}$ is transitive.

R is an equivalence relation.

Set of all lines related to the line y = 2x + 4 is the set of all lines that are parallel to the line y = 2x + 4.

Slope of the line y = 2x + 4 is m = 2.

Line parallel to the given line is in the form y = 2x + c, where $c \in R$.

Set of all lines related to the given line is given by y = 2x + c, where $c \in R$. Question 15:

Let R be the relation in the set $\{1,2,3,4\}$ given by

 $R = \{(1,2)(2,2), (1,1), (4,4), (1,3), (3,3), (3,2)\}$

Choose the correct answer.

- A. R is reflexive and symmetric but not transitive.
- B. R is reflexive and transitive but not symmetric.
- C. R is symmetric and transitive but not reflexive.
- D. R is an equivalence relation.

Solution:

 $R = \{(1,2)(2,2), (1,1), (4,4), (1,3), (3,3), (3,2)\}$ (*a*,*a*) $\in R$ for every $a \in \{1,2,3,4\}$ \therefore R is reflexive.

 $(1,2) \in R$ but $(2,1) \notin R$ \therefore R is not symmetric.

 $(a,b), (b,c) \in R$ for all $a, b, c \in \{1,2,3,4\}$ \therefore R is not transitive.

R is reflexive and transitive but not symmetric.

The correct answer is B.

Question 16:

Let R be the relation in the set N given by $R = \{(a,b): a = b - 2, b > 6\}$. Choose the correct answer.

A. $(2,4) \in R$ B. $(3,8) \in R$ C. $(6,8) \in R$ D. $(8,7) \in R$

Solution:

 $R = \{(a,b): a = b - 2, b > 6\}$ Now, $b > 6, (2,4) \notin R$ $3 \neq 8 - 2$ $\therefore (3,8) \notin R \text{ and as } 8 \neq 7 - 2$ $\therefore (8,7) \notin R$ Consider (6,8) 8 > 6 and 6 = 8 - 2 $\therefore (6,8) \in R$ The correct answer is C.