NCERT Solutions Class 12 Maths Chapter 1 Exercise 1.2

Question 1:

Show that the function $f: R_{\bullet} \to R_{\bullet}$ defined by $(x) = \frac{1}{x}$ is one –one and onto, where R_{\bullet} is the set of all non –zero real numbers. Is the result true, if the domain R_{\bullet} is replaced by N with co-domain being same as R_{\bullet} ?

Solution:

$$f: R_{\bullet} \to R_{\bullet} \text{ is by } f(x) = \frac{1}{x}$$

For one-one:
$$x, y \in R_{\bullet} \text{ such that } f(x) = f(y)$$
$$\Rightarrow \frac{1}{x} = \frac{1}{y}$$
$$\Rightarrow x = y$$

 \therefore *f* is one-one.

For onto:

For $y \in R$, there exists $x = \frac{1}{y} \in R_{\bullet} [as \ y \notin 0]$ such that

$$f(x) = \frac{1}{\left(\frac{1}{y}\right)} = y$$

 $\therefore f$ is onto.

Given function f is one-one and onto.

Consider function $g: N \to R_{\bullet}$ defined by $g(x) = \frac{1}{x}$

We have,
$$g(x_1) = g(x_2) \Rightarrow \frac{1}{x_1} = \frac{1}{x_2} \Rightarrow x_1 = x_2$$

 $\therefore g$ is one-one.

g is not onto as for $1.2 \in R$, there exist any *x* in *N* such that $g(x) = \frac{1}{1.2}$

Function \mathcal{G} is one-one but not onto.

Question 2:

Check the injectivity and surjectivity of the following functions:

- i. $f: N \to N$ given by $f(x) = x^2$
- ii. $f: Z \to Z$ given by $f(x) = x^2$
- iii. $f: R \to R$ given by $f(x) = x^2$
- iv. $f: N \to N$ given by $f(x) = x^3$
- v. $f: Z \to Z$ given by $f(x) = x^3$

Solution:

i. For $f: N \to N$ given by $f(x) = x^2$ $x, y \in N$ $f(x) = f(y) \Rightarrow x^2 = y^2 \Rightarrow x = y$ $\therefore f$ is injective. $2 \in N$. But, there does not exist any x in N such that $f(x) = x^2 = 2$ $\therefore f$ is not surjective Function f is injective but not surjective.

ii. $f: Z \to Z$ given by $f(x) = x^2$ f(-1) = f(1) = 1 but $-1 \neq 1$ $\therefore f$ is not injective.

> $-2 \in Z$ But, there does not exist any $x \in Z$ such that $f(x) = -2 \Rightarrow x^2 = -2$ $\therefore f$ is not surjective.

Function f is neither injective nor surjective.

iii. $f: R \to R$ given by $f(x) = x^2$ f(-1) = f(1) = 1 but $-1 \neq 1$ $\therefore f$ is not injective.

> $-2 \in Z$ But, there does not exist any $x \in Z$ such that $f(x) = -2 \Rightarrow x^2 = -2$ $\therefore f$ is not surjective. Function f is neither injective nor surjective.

iv. $f: N \to N$ given by $f(x) = x^3$ $x, y \in N$ $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$ $\therefore f$ is injective.

> $2 \in N$. But, there does not exist any x in N such that $f(x) = x^3 = 2$ $\therefore f$ is not surjective Function f is injective but not surjective.

v. $f: Z \to Z$ given by $f(x) = x^3$ $x, y \in Z$ $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$ $\therefore f$ is injective.

> $2 \in Z$. But, there does not exist any x in Z such that $f(x) = x^3 = 2$ $\therefore f$ is not surjective.

Function f is injective but not surjective.

Question 3:

Prove that the greatest integer function $f: R \to R$ given by f(x) = [x] is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

Solution:

 $f: R \to R \text{ given by } f(x) = [x]$ f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1 $\therefore f(1.2) = f(1.9), \text{ but } 1.2 \neq 1.9$ $\therefore f \text{ is not one-one.}$

Consider $0.7 \in R$ f(x) = [x] is an integer. There does not exist any element $x \in R$ such that f(x) = 0.7 $\therefore f$ is not onto. The greatest integer function is neither one-one nor onto.

Question 4:

Show that the modulus function $f: R \to R$ given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is -x, if x is negative.

Solution:

$$f(x) = |x| = \begin{cases} x, \text{ if } x \ge 0 \\ -x, \text{ if } x < 0 \end{cases}$$

$$f(-1) = |-1| = 1 \text{ and } f(1) = |1| = 1$$

$$\therefore f(-1) = f(1) \text{ but } -1 \neq 1$$

$$\therefore f \text{ is not one-one.}$$

Consider $-1 \in R$

f(x) = |x| is non-negative. There exist any element x in domain R such that f(x) = |x| = -1 $\therefore f$ is not onto.

The modulus function is neither one-one nor onto.

Question 5:

 $f(x) = \begin{cases} 1, \text{ if } x > 0\\ 0, \text{ if } x = 0\\ -1, \text{ if } x < 0 \end{cases}$ is neither one-one nor Show that the signum function $f : R \to R$ given by

Solution:

onto.

 $f(x) = \begin{cases} 1, \text{ if } x > 0\\ 0, \text{ if } x = 0\\ -1, \text{ if } x < 0 \end{cases}$ $f: R \to R$ is f(1) = f(2) = 1, but $1 \neq 2$ $\therefore f$ is not one-one.

f(x) takes only 3 values (1,0,-1) for the element -2 in co-domain

R, there does not exist any x in domain R such that f(x) = -2. $\therefore f$ is not onto.

The signum function is neither one-one nor onto.

Question 6:

Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one.

Solution:

 $A = \{1, 2, 3\}$ $B = \{4, 5, 6, 7\}$ $f: A \to B$ is defined as $f = \{(1,4), (2,5), (3,6)\}$ $\therefore f(1) = 4, f(2) = 5, f(3) = 6$ It is seen that the images of distinct elements of A under f are distinct.

 $\therefore f$ is one-one.

Ouestion 7:

In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

- i. $f: R \to R$ defined by f(x) = 3 4x
- ii. $f: R \to R$ defined by $f(x) = 1 + x^2$

Solution:

i. $f: R \rightarrow R$ defined by f(x) = 3 - 4x $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$ $\Rightarrow 3 - 4x_1 = 3 - 4x_2$ $\Rightarrow -4x = -4x_2$ $\Rightarrow x_1 = x_2$ $\therefore f$ is one-one.

For any real number (y) in R, there exists $\frac{3-y}{4}$ in R such that $f\left(\frac{3-y}{4}\right) = 3-4\left(\frac{3-y}{4}\right) = y$ $\therefore f$ is onto. Hence, f is bijective.

ii. $f: R \rightarrow R$ defined by $f(x) = 1 + x^2$ $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$ $\Rightarrow 1 + x_1^2 = 1 + x_2^2$ $\Rightarrow x_1^2 = x_2^2$ $\Rightarrow x_1 = \pm x_2$ $\therefore f(x_1) = f(x_2)$ does not imply that $x_1 = x_2$

```
Consider f(1) = f(-1) = 2

\therefore f is not one-one.
```

Consider an element -2 in co domain R. It is seen that $f(x)=1+x^2$ is positive for all $x \in R$. $\therefore f$ is not onto. Hence, f is neither one-one nor onto.

Question 8:

Let A and B be sets. Show that $f: A \times B \to B \times A$ such that (a,b) = (b,a) is a bijective function.

Solution:

$$f: A \times B \to B \times A \text{ is defined as } (a,b) = (b,a).$$
$$(a_1,b_1), (a_2,b_2) \in A \times B \text{ such that } f(a_1,b_1) = f(a_2,b_2)$$

$$\Rightarrow (b_1, a_1) = (b_2, a_2)$$

$$\Rightarrow b_1 = b_2 \text{ and } a_1 = a_2$$

$$\Rightarrow (a_1, b_1) = (a_2, b_2)$$

$$\therefore f \text{ is one-one.}$$

$$(b, a) \in B \times A \text{ there exist } (a, b) \in A \times B \text{ such that } f(a, b) = (b, a)$$

$$\therefore f \text{ is onto.}$$

$$f \text{ is bijective.}$$

Question 9:

$$f(n) = \begin{cases} \frac{n+1}{2}, \text{ if } n \text{ is odd} \\ \frac{n}{2}, \text{ if } n \text{ is even} \end{cases}$$

Let $f: N \to N$ be defined as function f is bijective. Justify your answer.

Solution:

$$f(n) = \begin{cases} \frac{n+1}{2}, \text{ if } n \text{ is odd} \\ \frac{n}{2}, \text{ if } n \text{ is even} \end{cases} \text{ for all } n \in N.$$

$$f(1) = \frac{1+1}{2} = 1 \text{ and } f(2) = \frac{2}{2} = 1$$

$$f(1) = f(2), \text{ where } 1 \neq 2$$

 \therefore *f* is not one-one.

Consider a natural number n in co domain N.

Case I: *n* is odd $\therefore n = 2r + 1$ for some $r \in N$ there exists $4r + 1 \in N$ such that $f(4r+1) = \frac{4r+1+1}{2} = 2r+1$

Case II: *n* is even $\therefore n = 2r$ for some $r \in N$ there exists $4r \in N$ such that $f(4r) = \frac{4r}{2} = 2r$ $\therefore f$ is onto.

f is not a bijective function.

for all $n \in N$. State whether the

Question 10:

Let $A = R - \{3\}, B = R - \{1\}$ and $f : A \to B$ defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.

2)

Solution:

$$A = R - \{3\}, B = R - \{1\} \text{ and } f : A \to B \text{ defined by } f(x) = \left(\frac{x-2}{x-3}\right)$$

$$x, y \in A \text{ such that } f(x) = f(y)$$

$$\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$$

$$\Rightarrow (x-2)(y-3) = (y-2)(x-3)$$

$$\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$$

$$\Rightarrow -3x - 2y = -3y - 2x$$

$$\Rightarrow 3x - 2x = 3y - 2y$$

$$\Rightarrow x = y$$

$$\therefore f \text{ is one-one.}$$

Let
$$y \in B = R - \{1\}$$
, then $y \neq 1$

1

The function f is onto if there exists $x \in A$ such that f(x) = y. Now,

$$f(x) = y$$

$$\Rightarrow \frac{x-2}{x-3} = y$$

$$\Rightarrow x-2 = xy-3y$$

$$\Rightarrow x(1-y) = -3y+2$$

$$\Rightarrow x = \frac{2-3y}{1-y} \in A$$

$$[y \neq 1]$$

s
$$\frac{2-3y}{1-y} \in A$$
 such th

Thus, for any $y \in B$, there exists 1-y such that

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right)-2}{\left(\frac{2-3y}{1-y}\right)-3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y$$

 $\therefore f$ is onto. Hence, the function is one-one and onto.

Question 11:

Let $f: R \to R$ defined as $f(x) = x^4$. Choose the correct answer.

- A. f is one-one onto
- B. f is many-one onto
- C. f is one-one but not onto
- D. f is neither one-one nor onto

Solution:

 $f: R \to R \text{ defined as } f(x) = x^4$ $x, y \in R \text{ such that } f(x) = f(y)$ $\Rightarrow x^4 = y^4$ $\Rightarrow x = \pm y$ $\therefore f(x) = f(y) \text{ does not imply that } x = y.$ For example f(1) = f(-1) = 1

 $\therefore f$ is not one-one.

Consider an element 2 in co domain R there does not exist any x in domain R such that f(x) = 2

 $\therefore f$ is not onto.

Function f is neither one-one nor onto. The correct answer is D.

Question 12:

Let $f: R \to R$ defined as f(x) = 3x. Choose the correct answer.

- A. f is one-one onto
- B. f is many-one onto
- C. f is one-one but not onto
- D. f is neither one-one nor onto

Solution:

 $f: R \to R \text{ defined as } f(x) = 3x$ $x, y \in R \text{ such that } f(x) = f(y)$ $\Rightarrow 3x = 3y$ $\Rightarrow x = y$ $\therefore f$ is one-one.

For any real number y in co domain R, there exist $\frac{y}{3}$ in R such that $f\left(\frac{y}{3}\right) = 3\left(\frac{y}{3}\right) = y$ $\therefore f$ is onto.

Hence, function f is one-one and onto. The correct answer is A.

