NCERT Solutions Class 12 Maths Chapter 1 Exercise 1.4

Question 1:

Determine whether or not each of the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for this.

- i. On \mathbb{Z}^+ , define * by a * b = a b
- ii. On \mathbb{Z}^+ , define * by a * b = ab
- iii. On **R**, define *by $a * b = ab^2$
- iv. On \mathbf{Z}^+ , define * by a * b = |a-b|
- v. On \mathbf{Z}^+ , define * by a * b = a

Solution:

i. On \mathbf{Z}^+ , define * by a * b = a - b

It is not a binary operation as the image of (1,2) under * is

1*2 = 1-2

 $\Rightarrow -1 \notin \mathbb{Z}^+$.

Therefore, * is not a binary operation.

ii. On \mathbb{Z}^+ , define * by a * b = ab

It is seen that for each $a, b \in \mathbb{Z}^+$, there is a unique element *ab* in \mathbb{Z}^+ .

This means that * carries each pair (a,b) to a unique element a * b = ab in \mathbb{Z}^+ . Therefore, * is a binary operation.

- iii. On **R**, define * $a * b = ab^2$ It is seen that for each $a,b \in \mathbf{R}$, there is a unique element ab^2 in **R**. This means that * carries each pair (a,b) to a unique element $a * b = ab^2$ in **R**. Therefore, *is a binary operation.
- iv. On \mathbf{Z}^+ , define * by a*b = |a-b|It is seen that for each $a, b \in \mathbf{Z}^+$, there is a unique element |a-b| in \mathbf{Z}^+ . This means that * carries each pair (a,b) to a unique element a*b = |a-b| in \mathbf{Z}^+ . Therefore, *is a binary operation.
- v. On \mathbb{Z}^+ , define * by a * b = a*carries each pair (a, b) to a unique element in a * b = a in \mathbb{Z}^+ . Therefore, * is a binary operation.

Question 2:

For each binary operation *defined below, determine whether * is commutative or associative.

i. On \mathbf{Z}^+ , define a * b = a - b

ii. On
$$\mathbf{Q}$$
, define $a^*b = ab+1$
iii. On \mathbf{Q} , define $a^*b = \frac{ab}{2}$
iv. On \mathbf{Z}^+ , define $a^*b = 2^{ab}$
v. On \mathbf{Z}^+ , define $a^*b = a^b$
vi. On $\mathbf{R} - \{-1\}$, define $a^*b = \frac{a}{b+1}$

i. On \mathbb{Z}^+ , define $a^*b = a - b$ It can be observed that $1^*2 = 1 - 2 = -1$ and $2^*1 = 2 - 1 = 1$. $\therefore 1^*2 \neq 2^*1$; where 1, $2 \in \mathbb{Z}$ Hence, the operation * is not commutative.

Also,

$$(1*2)*3 = (1-2)*3 = -1*3 = -1-3 = -4$$

 $1*(2*3) = 1*(2-3) = 1*-1 = 1-(-1) = 2$
 $\therefore (1*2)*3 \neq 1*(2*3)$
Hence, the operation * is not associative

where $1, 2, 3 \in \mathbb{Z}$

ii. On **Q**, define a * b = ab + 1 ab = ba for all $a, b \in Q$ $\Rightarrow ab + 1 = ba + 1$ for all $a, b \in Q$ $\Rightarrow a * b = b * a$ for all $a, b \in Q$ Hence, the operation * is commutative.

$$(1*2)*3 = (1 \times 2+1)*3 = 3*3 = 3 \times 3+1 = 10$$

 $1*(2*3) = 1*(2 \times 3+1) = 1*7 = 1 \times 7+1 = 8$
 $\therefore (1*2)*3 \neq 1*(2*3)$

where $1, 2, 3 \in \mathbf{Q}$

Hence, the operation * is not associative.

iii. On **Q**, define $a^*b = \frac{ab}{2}$ ab = ba for all $a, b \in Q$ $\Rightarrow \frac{ab}{2} = \frac{ab}{2}$ for all $a, b \in Q$ $\Rightarrow a^*b = b^*a$ for all $a, b \in Q$ Hence, the operation * is commutative.

$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{\left(\frac{ab}{2}\right)c}{2} = \frac{abc}{4}$$

And

$$a^*(b^*c) = a^*\left(\frac{bc}{2}\right) = \frac{a\left(\frac{bc}{2}\right)}{2} = \frac{abc}{4}$$

$$\therefore (a^*b)^*c = a^*(b^*c)$$

Hence, the operation * is associative.

```
where a, b, c \in \mathbf{Q}
```

- iv. On \mathbb{Z}^+ , define $a * b = 2^{ab}$ ab = ba for all $a, b \in \mathbb{Z}$ $\Rightarrow 2^{ab} = 2^{ba}$ for all $a, b \in \mathbb{Z}$ $\Rightarrow a * b = b * a$ for all $a, b \in \mathbb{Z}$ Hence, the operation * is commutative.
 - $(1*2)*3 = 2^{1\times 2}*3 = 4*3 = 2^{4\times 3} = 2^{12}$ $1*(2*3) = 1*2^{2\times 3} = 1*2^{6} = 1*64 = 2^{64}$ $\therefore (1*2)*3 \neq 1*(2*3)$

Hence, the operation * is not associative.

v. On Z^+ , define $a * b = a^b$ $1*2 = 1^2 = 1$ $2*1 = 2^1 = 2$ $\therefore 1*2 \neq 2*1$

where $1, 2, 3 \in \mathbb{Z}^+$

where $1, 2, \in \mathbb{Z}^+$

where $2, 3, 4 \in \mathbb{Z}^+$

Hence, the operation * is not commutative.

$$(2*3)*4 = 2^{3}*4 = 8*4 = 8^{4} = 2^{12}$$

$$2*(3*4) = 2*3^{4} = 2*81 = 2^{81}$$

$$\therefore (2*3)*4 \neq 2*(3*4)$$

Hence, the operation * is not associative.

vi. On
$$\mathbf{R} - \{-1\}$$
, define $a^{*b} = \frac{a}{b+1}$
 $1^{*2} = \frac{1}{2+1} = \frac{1}{3}$
 $2^{*1} = \frac{2}{1+1} = \frac{2}{2} = 1$

 $\therefore 1*2 \neq 2*1$

where
$$1, 2, \in \mathbf{R} - \{-1\}$$

Hence, the operation * is not commutative.

$$(1*2)*3 = \frac{1}{3}*3 = \frac{\frac{1}{3}}{3+1} = \frac{1}{12}$$

$$1*(2*3) = 1*\frac{2}{3+1} = 1*\frac{2}{4} = 1*\frac{1}{2} = \frac{1}{\frac{1}{2}+1} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$$

$$\therefore (1*2)*3 \neq 1*(2*3)$$
where $1,2,3 \in \mathbb{R} - \{-1\}$

Hence, the operation * is not associative.

Question 3:

Consider the binary operation \land on the set $\{1, 2, 3, 4, 5\}$ defined by $a \land b = \min\{a, b\}$. Write the operation table of the operation \land . Solution:

The binary operation \land on the set $\{1,2,3,4,5\}$ is defined by $a \land b = \min\{a,b\}$ for all $a,b \in \{1,2,3,4,5\}$

The operation table for the given operation \wedge can be given as:

	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

Question 4:

Consider a binary operation * on the set $\{1, 2, 3, 4, 5\}$ given by the following multiplication table.

- i. Compute (2*3)*4 and 2*(3*4)
- ii. Is *commutative?
- iii. Compute (2*3)*(4*5). (Hint: Use the following table)

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1

3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

(2*3)*4=1*4=1

i.
$$2^*(3^*4) = 2^*1 = 1$$

ii. For every $a, b \in \{1, 2, 3, 4, 5\}$, we have a * b = b * a. Therefore, * is commutative.

iii.
$$(2*3)*(4*5)$$

 $(2*3)=1 \text{ and } (4*5)=1$
 $\therefore (2*3)*(4*5)=1*1=1$

Question 5:

Let *' be the binary operation on the set $\{1,2,3,4,5\}$ defined by a*'b = H.C.F. of a and b. Is the operation *' same as the operation * defined in Exercise 4 above? Justify your answer.

Solution:

The binary operation on the set $\{1,2,3,4,5\}$ is defined by a *'b = H.C.F. of a and b. The operation table for the operation *' can be given as:

*'	1	2	3	4	5	
1	1	1	1	1	1	
2	1	2	1	2	1	
3	1	1	3	1	1	
4	1	2	1	4	1	
5	1	1	1	1	5	

The operation table for the operations *' and * are same. operation *' is same as operation *.

Question 6:

Let * be the binary operation on N defined by a * b = L.C.M. of a and b. Find

- i. 5*7,20*16
- ii. Is *commutative?
- iii. Is *associative?
- iv. Find the identity of *in N
- v. Which elements of N are invertible for the operation *?

The binary operation on N is defined by a * b = L.C.M. of a and b.

- i. 5*7=L.C.M of 5and 7=35 20*16=LCM of 20 and 16=80
- ii. L.C.M. of a and b = LCM of b and a for all $a, b \in N$ $\therefore a * b = b * a$ Operation * is commutative.
- iii. For $a,b,c \in N$ (a*b)*c = (L.C.M. of a and b)*c = L.C.M. of a,b,c a*(b*c)=a*(L.C.M. of b and c)=L.C.M. of a,b,c $\therefore (a*b)*c = a*(b*c)$ Operation *is associative.
- iv. L.C.M. of a and 1=a= L.C.M. of 1 and a for all $a \in N$ a*1=a=1*a for all $a \in N$ Therefore, 1 is the identity of *in N.
- v. An element a in N is invertible with respect to the operation * if there exists an element b in N, such that a*b = e = b*a
 e=1
 L.C.M. of a and b=1=LCM of b and a possible only when a and b are equal to 1.
 1 is the only invertible element of N with respect to the operation *.

Question 7:

Is * defined on the set $\{1,2,3,4,5\}$ by a*b= LCM of *a* and *b* a binary operation? Justify your answer.

Solution:

The operation * on the set $\{1,2,3,4,5\}$ is defined by a*b = LCM of a and b. The operation table for the operation *' can be given as:

*	1	2	3	4	5
1	1	2	3	4	5
2	2	2	6	4	10
3	3	6	3	12	15
4	4	4	12	4	20
5	5	10	15	20	5

 $3*2 = 2*3 = 6 \notin A$, $5*2 = 2*5 = 10 \notin A$, $3*4 = 4*3 = 12 \notin A$, $3*5 = 5*3 = 15 \notin A$, $4*5 = 5*4 = 20 \notin A$ The given operation *is not a binary operation.

Question 8:

Let * be the binary operation on N defined by a*b = H.C.F. of a and b. Is * commutative? Is * associative? Does there exist identity for this binary operation on N?

Solution:

The binary operation * on N defined by a*b = H.C.F. of a and b. $\therefore a*b = b*a$ Operation * is commutative.

For all $a,b,c \in N$, (a*b)*c = (HCF of a and b)*c = HCF of a,b,c a*(b*c)=a*(HCF. of b and c)=HCF of a,b,c $\therefore (a*b)*c = a*(b*c)$ Operation * is associative.

 $e \in N$ will be the identity for the operation *if a * e = a = e * a for all $a \in N$. But this relation is not true for any $a \in N$.

Operation * does not have any identity in N.

Question 9:

Let * be the binary operation on Q of rational numbers as follows:

i. a*b = a - bii. $a*b = a^2 + b^2$ iii. a*b = a + abiv. $a*b = (a-b)^2$ v. $a+b = \frac{ab}{4}$ vi. $a*b = ab^2$

Find which of the binary operations are commutative and which are associative.

i.

On Q, the operation * is defined as
$$a * b = a - b$$

 $\frac{1}{2} * \frac{1}{3} = \frac{1}{2} - \frac{1}{3} = \frac{3 - 2}{3} = \frac{1}{6}$
And
 $\frac{1}{3} * \frac{1}{2} = \frac{1}{3} - \frac{1}{2} = \frac{2 - 3}{6} = \frac{-1}{6}$
 $\therefore \left(\frac{1}{2} * \frac{1}{3}\right) \neq \left(\frac{1}{3} * \frac{1}{2}\right)$ where $\frac{1}{2}, \frac{1}{3} \in Q$

Operation * is not commutative.

$$\left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} = \left(\frac{1}{2} - \frac{1}{3}\right) * \frac{1}{4} = \frac{1}{6} * \frac{1}{4} = \frac{1}{6} - \frac{1}{4} = \frac{2 - 3}{12} = \frac{-1}{12}$$

$$\frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) = \frac{1}{2} * \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{1}{2} * \frac{1}{12} = \frac{1}{2} - \frac{1}{12} = \frac{6 - 1}{12} = \frac{5}{12}$$

$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} \neq \frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right)$$

$$\text{where } \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \in Q$$

Operation * is not associative.

ii. On Q, the operation * is defined as
$$a * b = a^2 + b^2$$

For $a, b \in Q$
 $a*b = a^2 + b^2 = b^2 + a^2 = b*a$
 $\therefore a*b = b*a$
Operation * is commutative.
 $(1*2)*3 = (1^2 + 2^2)*3 = (1+4)*3 = 5*3 = 5^2 + 3^2 = 25 + 9 = 34$
 $1*(2*3) = 1*(2^2 + 3^2) = 1*(4+9) = 1*13 = 1^2 + 13^2 = 1 + 169 = 170$
 $\therefore (1*2)*3 \neq 1*(2*3)$ where $1, 2, 3 \in Q$

Operation * is not associative.

iii. On Q, the operation * is defined as
$$a * b = a + ab$$

 $1*2 = 1+1 \times 2 = 1+2=3$
 $2*1 = 2+2 \times 1 = 2+2=4$
 $\therefore 1*2 \neq 2*1$ where $1, 2 \in Q$
Operation * is not commutative.
 $(1*2)*3 = (1+1\times 2)*3 = 3*3 = 3+3\times 3 = 3+9 = 12$
 $1*(2*3) = 1*(2+2\times 3) = 1*8 = 1+1\times 8 = 1+8 = 9$
 $\therefore (1*2)*3 \neq 1*(2*3)$ where $1, 2, 3 \in Q$
Operation * is not associative.

iv. On Q, the operation * is defined as
$$a * b = (a-b)^2$$

For $a, b \in Q$
 $a * b = (a-b)^2$
 $b * a = (b-a)^2 = [-(a-b)]^2 = (a-b)^2$
 $\therefore a * b = b * a$
Operation * is commutative.

$$(1*2)*3 = (1-2)^2 * 3 = (-1)^2 * 3 = 1*3 = (1-3)^2 = (-2)^2 = 4$$

$$1*(2*3) = 1*(2-3)^2 = 1*(-1)^2 = 1*1 = (1-1)^2 = 0$$

$$\therefore (1*2)*3 \neq 1*(2*3)$$
 where 1, 2, 3 \in Q
Operation * is not associative.

v. On Q, the operation * is defined as $a + b = \frac{ab}{4}$ For $a, b \in Q$ $a * b = \frac{ab}{4} = \frac{ba}{4} = b * a$ $\therefore a * b = b * a$ Operation * is commutative.

For $a, b, c \in Q$

$$(a*b)*c = \frac{ab}{4}*c = \frac{ab}{4} \cdot \frac{c}{16}$$

$$a*(b*c) = a*\frac{ab}{4} = \frac{a\cdot\frac{ab}{4}}{4} = \frac{abc}{16}$$

$$\therefore (a*b)*c = a*(b*c)$$
Where $a, b, c \in Q$
Operation * is associative.

vi. On Q, the operation * is defined as
$$a * b = ab^2$$

$$\frac{1}{2} * \frac{1}{3} = \frac{1}{2} \cdot \left(\frac{1}{3}\right)^2 = \frac{1}{2} \cdot \frac{1}{9} = \frac{1}{18}$$

$$\frac{1}{3} * \frac{1}{2} = \frac{1}{3} \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$$

$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) \neq \left(\frac{1}{3} * \frac{1}{2}\right)$$
where $\frac{1}{2}, \frac{1}{3} \in Q$
Operation * is not commutative.

$$\left(\frac{1}{2}*\frac{1}{3}\right)*\frac{1}{4} = \left(\frac{1}{2}\cdot\left(\frac{1}{3}\right)^2\right)*\frac{1}{4} = \frac{1}{18}*\frac{1}{4} = \frac{1}{18}\cdot\left(\frac{1}{4}\right)^2 = \frac{1}{18\times16}$$
$$\frac{1}{2}*\left(\frac{1}{3}*\frac{1}{4}\right) = \frac{1}{2}*\left(\frac{1}{3}\cdot\left(\frac{1}{4}\right)^2\right) = \frac{1}{2}*\frac{1}{48} = \frac{1}{2}\cdot\left(\frac{1}{48}\right)^2 = \frac{1}{2\times(48)^2}$$
$$\therefore \left(\frac{1}{2}*\frac{1}{3}\right)*\frac{1}{4} \neq \frac{1}{2}*\left(\frac{1}{3}*\frac{1}{4}\right) \qquad \text{where } \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \in Q$$

Operation * is not associative.

Operations defined in (ii), (iv), (v) are commutative and the operation defined in (v) is associative.

Question 10:

Find which of the operations given above has identity.

Solution:

An element $e \in Q$ will be the identity element for the operation * if

$$a^*e = a = e^*a$$
, for all $a \in Q$
 $a^*b = \frac{ab}{4}$
 $\Rightarrow a^*e = a$
 $\Rightarrow \frac{ae}{4} = a$
 $\Rightarrow e = 4$

Similarly, it can be checked for e * a = a, we get e = 4 is the identity.

Question 11:

 $A = N \times N$ and * be the binary operation on A defined by $(a,b)^*(c,d) = (a+c,b+d)$. Show that * is commutative and associative. Find the identity element for * on A, if any.

Solution:

 $A = N \times N$ and * be the binary operation on A defined by

 $(a,b)^*(c,d) = (a+c,b+d)$ $(a,b)^*(c,d) \in A$ $a,b,c,d \in N$ $(a,b)^*(c,d) = (a+c,b+d)$ $(c,d)^*(a,b) = (c+a,d+b) = (a+c,b+d)$ $\therefore (a,b)^*(c,d) = (c,d)^*(a,b)$ Operation * is commutative.

Now, let $(a,b), (c,d), (e,f) \in A$ $a,b,c,d,e, f \in N$ $[(a,b)^*(c,d)]^*(e,f) = (a+c,b+d)^*(e,f) = (a+c+e,b+d+f)$ $(a,b)^*[(c,d)^*(e,f)] = (a,b)^*(c+e,d+f) = (a+c+e,b+d+f)$ $\therefore [(a,b)^*(c,d)]^*(e,f) = (a,b)^*[(c,d)^*(e,f)]$ Operation * is associative.

An element $e = (e_1, e_2) \in A$ will be an identity element for the operation * if a + e = a = e * a for all $a = (a_1, a_2) \in A$ i.e., $(a_1 + e_1, a_2 + e_2) = (a_1, a_2) = (e_1 + a_1, e_2 + a_2)$, which is not true for any element in A.

Therefore, the operation * does not have any identity element.

Question 12:

State whether the following statements are true or false. Justify.

- i. For an arbitrary binary operation * on a set N, a * a = a for all $a \in N$.
- ii. If * is a commutative binary operation on N, then $a^*(b^*c) = (c^*b)^*a$

Solution:

- i. Define operation * on a set N as a*a = a for all a ∈ N. In particular, for a = 3, 3*3=9 ≠ 3 Therefore, statement (i) is false.
- ii. R.H.S. = (c*b)*a= (b*c)*a [* is commutative] = a*(b*c) [Again, as * is commutative] = L.H.S. $\therefore a*(b*c) = (c*b)*a$ Therefore, statement (ii) is true.

Question 13:

Consider a binary operation * on N defined as $a * b = a^3 + b^3$. Choose the correct answer.

- A. Is * both associative and commutative?
- B. Is * commutative but not associative?
- C. Is * associative but not commutative?
- D. Is * neither commutative nor associative?

On N, operation *is defined as $a * b = a^3 + b^3$. For all $a, b \in N$ $a * b = a^3 + b^3 = b^3 + a^3 = b * a$

Operation * is commutative.

$$(1*2)*3 = (1^3 + 2^3)*3 = (1+8)*3 = 9*3 = 9^3 + 3^3 = 729 + 27 = 756$$

 $1*(2*3) = 1*(2^3 + 3^3) = 1*(8+27) = 1*35 = 1^3 + 35^3 = 1 + 42875 = 42876$
 $\therefore (1*2)*3 \neq 1*(2*3)$ Operation *is not associative.

Therefore, Operation * is commutative, but not associative. The correct answer is B.