NCERT Solutions Class 12 Maths Chapter 1 Miscellaneous Exercise

Question 1:

Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that $gof = fog = I_R$.

Solution:

 $f: R \to R$ is defined as f(x) = 10x+7For one-one: f(x) = f(y) where $x, y \in R$ $\Rightarrow 10x+7 = 10y+7$ $\Rightarrow x = y$ $\therefore f$ is one-one.

For onto:

 $y \in R$, Let y = 10x + 7 $\Rightarrow x = \frac{y - 7}{10} \in R$

For any $y \in R$, there exists $x = \frac{y-7}{10} \in R$ such that (y-7)

$$f(x) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y - 7 + 7 = y$$

 $\therefore f$ is onto.

Thus, f is an invertible function.

Let us define $g: R \to R$ as $g(y) = \frac{y-7}{10}$. Now,

$$gof(x) = g(f(x)) = g(10x+7) = \frac{(10x+7)-7}{10} = \frac{10x}{10} = 10$$

And,

$$fog(y) = f(g(y)) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y - 7 + 7 = y$$

$$\therefore gof = I_R \text{ and } fog = I_R$$

Hence, the required function $g: R \to R$ as $g(y) = \frac{y-7}{10}$.

Question 2:

Let $f: W \to W$ be defined as f(n) = n-1, if is odd and f(n) = n+1, if *n* is even. Show that *f* is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Solution:

 $f(n) = \begin{cases} n-1, \text{ If } n \text{ is odd} \\ n+1, \text{ If } n \text{ is even} \end{cases}$ For one-one: f(n) = f(m)If *n* is odd and *m* is even, then we will have n-1 = m+1. $\Rightarrow n-m = 2$

Similarly, the possibility of n being even and m being odd can also be ignored under a similar argument.

 \therefore Both *n* and *m* must be either odd or even.

Now, if both n and m are odd, then we have:

f(n) = f(m) $\Rightarrow n-1 = m-1$ $\Rightarrow n=m$

Again, if both *n* and *m* are even, then we have:

f(n) = f(m) $\Rightarrow n+1 = m+1$ $\Rightarrow n=m$

 $\therefore f$ is one-one.

For onto:

Any odd number 2r+1 in co-domain N is the image of 2r in domain N and any even number 2r in co-domain N is the image of 2r+1 in domain N.

 $\therefore f$ is onto. f is an invertible function.

Let us define $g: W \to W$ as $f(m) = \begin{cases} m-1, \text{ If } m \text{ is odd} \\ m+1, \text{ If } m \text{ is even} \end{cases}$ When r is odd gof(n) = g(f(n)) = g(n-1) = n-1+1 = n

When r is even

$$gof(n) = g(f(n)) = g(n+1) = n+1-1 = n$$

When *m* is odd fog(n) = f(g(m)) = f(m-1) = m-1+1 = m

When m is even

$$fog(m) = f(g(m)) = f(m+1) = m+1-1 = m$$

$$\therefore gof = I_{W} \text{ and } fog = I_{W}$$

f is invertible and the inverse of f is given by $f^{-1} = g$, which is the same as f. inverse of f is f itself.

Question 3:

If $f: R \to R$ be defined as $f(x) = x^2 - 3x + 2$, find f(f(x)).

Solution:

$$f: R \to R \text{ is defined as } f(x) = x^2 - 3x + 2.$$

$$f(f(x)) = f(x^2 - 3x + 2)$$

$$= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$$

$$= (x^4 + 9x^2 + 4 - 6x^3 - 12x + 4x^2) + (-3x^2 + 9x - 6) + 2$$

$$= x^4 - 6x^3 + 10x^2 - 3x$$

Question 4:

Show that function $f: R \to \{x \in R: -1 < x < 1\}$ be defined by $f(x) = \frac{x}{1+|x|}$, $x \in R$ is one-one and onto function.

Solution:

$$f: R \to \left\{ x \in R : -1 < x < 1 \right\} \text{ is defined by } f(x) = \frac{x}{1 + |x|}, x \in R.$$

For one-one:

f(x) = f(y) where $x, y \in R$

$$\Rightarrow \frac{x}{1+|x|} = \frac{y}{1+|y|}$$

If x is positive and y is negative,

$$\frac{x}{1+|x|} = \frac{y}{1+|y|}$$
$$\Rightarrow 2xy = x - y$$

Since, x is positive and y is negative,

$$x > y \Longrightarrow x - y > 0$$

2xy is negative.

$$2xy \neq x - y$$

Case of x being positive and y being negative, can be ruled out.

 $\therefore x$ and y have to be either positive or negative.

If x and y are positive,

$$f(x) = f(y)$$

$$\Rightarrow \frac{x}{1+x} = \frac{y}{1+y}$$

$$\Rightarrow x - xy = y - xy$$

$$\Rightarrow x = y$$

 $\therefore f$ is one-one.

For onto:

Let $y \in R$ such that -1 < y < 1.

If x is negative, then there exists
$$x = \frac{y}{1+y} \in R$$
 such that

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|} = \frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)} = \frac{y}{1+y-y} = y$$

If x is positive, then there exists $x = \frac{y}{1-y} \in R$ such that

$$f(x) = f\left(\frac{y}{1-y}\right) = \frac{\left(\frac{y}{1-y}\right)}{1+\left|\frac{y}{1-y}\right|} = \frac{\frac{y}{1-y}}{1+\left(\frac{y}{1-y}\right)} = \frac{y}{1-y+y} = y$$

 $\therefore f$ is onto.

Hence, f is one-one and onto.

Question 5:

Show that function $f: R \to R$ be defined by $f(x) = x^3$ is injective.

Solution:

 $f: R \to R$ is defined by $f(x) = x^3$

For one-one:

We need to show that x = ySuppose $x \neq y$, their cubes will also not be equal. $\Rightarrow x^3 \neq y^3$

This will be a contradiction to $\begin{pmatrix} 1 \end{pmatrix}$.

 $\therefore x = y$. Hence, f is injective.

Question 6:

Give examples of two functions $f: N \to Z$ and $g: Z \to Z$ such that *gof* is injective but \mathcal{G} is not injective.

(Hint: Consider $f(x) = x_{and} g(x) = |x|_{1}$)

Solution:

Define $f: N \to Z$ as f(x) = x and $g: Z \to Z$ as g(x) = |x|Let us first show that \mathcal{G} is not injective. (-1) = |-1| = 1(1) = |1| = 1 $\therefore (-1) = g(1)$, but $-1 \neq 1$ \therefore g is not injective.

 $gof: N \to Z$ is defined as gof(x) = g(f(x)) = g(x) = |x| $x, y \in N$ such that gof(x) = gof(y) $\Rightarrow |x| = |y|$

Since $x, y \in N$, both are positive. $\therefore |x| = |y|$ $\Rightarrow x = y$ $\therefore gof$ is injective.

Question 7:

Given examples of two functions $f: N \to N$ and $g: N \to N$ such that *gof* is onto but *f* is not onto.

(Hint: Consider $f(x) = x + 1_{and} g(x) = \begin{cases} x - 1, & \text{if } x > 1 \\ 1, & \text{if } x = 1 \end{cases}$) Solution:

Define $f: N \to Z$ as f(x) = x + 1 and $g: Z \to Z$ as $g(x) = \begin{cases} x - 1, & \text{if } x > 1 \\ 1, & \text{if } x = 1 \end{cases}$

Let us first show that g is not onto.

Consider element 1 in co-domain N. This element is not an image of any of the elements in domain N.

]

 $\therefore f$ is not onto.

 $g: N \to N$ is defined by

$$gof(x) = g(f(x)) = g(x+1) = x+1-1 = x$$
 $[x \in N \Rightarrow x+1 > 1]$

For $y \in N$, there exists $x = y \in N$ such that gof(x) = y.

 \therefore gof is onto.

Question 8:

Given a non-empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets A,B in P(X), ARB if and only if $A \subset B$. Is R an equivalence relation on P(X)? Justify you answer.

Solution:

Since every set is a subset of itself, ARA for all $A \in P(X)$. \therefore R is reflexive.

Let $ARB \Rightarrow A \subset B$ This cannot be implied to $B \subset A$. If $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then it cannot be implied that B is related to A. $\therefore R$ is not symmetric.

If ARB and BRC, then $A \subset B$ and $B \subset C$. $\Rightarrow A \subset C$ $\Rightarrow ARC$ $\therefore R$ is transitive.

R is not an equivalence relation as it is not symmetric.

Question 9:

Given a non-empty set X, consider the binary operation $*: P(X) \times P(X) \rightarrow P(X)$ given by $A*B = A \cap B \forall A, B$ in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation *.

Solution:

 $P(X) \times P(X) \to P(X) \text{ given by } A * B = A \cap B \forall A, B \text{ in } P(X)$ $A \cap X = A = X \cap A \text{ for all } A \in P(X)$ $\Rightarrow A * X = A = X * A \text{ for all } A \in P(X)$ $X \text{ is the identity element for the given binary operation }^*.$

An element $A \in P(X)$ is invertible if there exists $B \in P(X)$ such that A * B = X = B * A [As X is the identity element]

Or

 $A \cap B = X = B \cap A$

This case is possible only when A = X = B.

X is the only invertible element in P(X) with respect to the given operation *.

Question 10:

Find the number of all onto functions from the set $\{1, 2, 3, ..., n\}$ to itself.

Solution:

Onto functions from the set $\{1, 2, 3, ..., n\}$ to itself is simply a permutation on *n* symbols 1, 2, 3, ..., n.

Thus, the total number of onto maps from $\{1, 2, 3, ..., n\}$ to itself is the same as the total number of permutations on *n* symbols 1, 2, 3, ..., *n*, which is *n*!.

Question 11:

Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^{-1} of the following functions F from S to T, if it exists. i. $F = \{(a,3), (b,2), (c,1)\}$ ii. $F = \{(a,2), (b,1), (c,1)\}$

Solution: $S = \{a, b, c\}, T = \{1, 2, 3\}$

i. $F: S \rightarrow T$ is defined by $F = \{(a,3), (b,2), (c,1)\}$ $\Rightarrow F(a) = 3, F(b) = 2, F(c) = 1$

Therefore, $F^{-1}: T \to S$ is given by $F^{-1} = \{(3, a), (2, b), (1, c)\}$

ii. $F: S \to T$ is defined by $F = \{(a,2), (b,1), (c,1)\}$ Since, F(b) = F(c) = 1, F is not one-one. Hence, F is not invertible i.e., F^{-1} does not exists.

Question 12:

Consider the binary operations^{*}: $R \times R \to R$ and $o: R \times R \to R$ defined as $a^*b = |a-b|$ and $aob = a, \forall a, b \in R$. Show that ^{*}is commutative but not associative θ is associative but not commutative. Further, show that $\forall a, b, c \in R$, $a^*(boc) = (a^*b)o(a^*c)$. [If it is so, we say that the operation ^{*} distributes over the operation θ]. Does θ distribute over ^{*}? Justify your answer.

Solution:

It is given that *: $R \times R \to R$ and $o: R \times R \to R$ defined as a * b = |a-b| and $aob = a, \forall a, b \in R$. For $a, b \in R$, we have a * b = |a-b| and b * a = |b-a| = |-(a-b)| = |a-b| $\therefore a * b = b * a$ \therefore The operation * is commutative. (1*2)*3 = (|1-2|)*3 = 1*3 = |1-3| = 2 1*(2*3) = 1*(|2-3|) = 1*1 = |1-1| = 0 $\therefore (1*2)*3 \neq 1*(2*3)$ where $1, 2, 3 \in \mathbb{R}$

 \therefore The operation * is not associative.

Now, consider the operation θ :

It can be observed that 1o2 = 1 and 2o1 = 2.

 $\therefore 102 \neq 201$ (where $1, 2 \in R$)

 \therefore The operation θ is not commutative.

Let $a, b, c \in R$. Then, we have:

(aob)oc = aoc = aao(boc) = aob = a $\Rightarrow (aob)oc = ao(boc)$

 \therefore The operation θ is associative.

Now, let $a,b,c \in R$, then we have:

$$a^{*}(boc) = a^{*}b = |a-b|$$

 $(a^{*}b)o(a^{*}c) = (|a-b|)o(|a-c|) = |a-b|$

Hence, $a^*(boc) = (a^*b)o(a^*c)$

Now,

$$lo(2*3) = lo(|2-3|) = lo1 = 1$$
$$(lo2)*(lo3) = 1*1 = |1-1| = 0$$

 $\therefore 1o(2*3) \neq (1o2)*(1o3)$ where $1, 2, 3 \in \mathbb{R}$

 \therefore The operation θ does not distribute over^{*}.

Question 13:

Given a non - empty set X, let *: $P(X) \times P(X) \to P(X)$ be defined as $A^*B = (A-B) \cup (B-A)$, $\forall A, B \in P(X)$. Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with $A^{-1} = A$. (Hint: $(A-\Phi) \cup (\Phi-A) = A$ and $(A-A) \cup (A-A) = A^*A = \Phi$).

Solution:

It is given that *: $P(X) \times P(X) \rightarrow P(X)$ is defined as $A * B = (A - B) \cup (B - A), \forall A, B \in P(X)$ $A \in P(X)$ then, $A * \Phi = (A - \Phi) \cup (\Phi - A) = A \cup \Phi = A$ $\Phi * A = (\Phi - A) \cup (A - \Phi) = \Phi \cup A = A$ $\therefore A * \Phi = A = \Phi * A$ for all $A \in P(X)$ Φ is the identity for the operation *.

Element $A \in P(X)$ will be invertible if there exists $B \in P(X)$ such that $A * B = \Phi = B * A$ [As Φ is the identity element] $A * A = (A - A) \cup (A - A) = \Phi \cup \Phi = \Phi$ for all $A \in P(X)$.

All the elements A of P(X) are invertible with $A^{-1} = A$.

Question 14:

Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as

 $a+b = \begin{cases} a+b, & \text{if } a+b<6 \\ a+b-6 & \text{if } a+b\ge6 \end{cases}$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6-a being the inverse of a.

Solution:

Let $X = \{0, 1, 2, 3, 4, 5\}$

The operation *is defined as $a+b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$

An element $e \in X$ is the identity element for the operation *, if a * e = a = e * a $\forall a \in X$ For $a \in X$, $a * 0 = a + 0 = a \qquad [a \in X \Longrightarrow a + 0 < 6]$ $0 * a = 0 + a = a \qquad [a \in X \Longrightarrow 0 + a < 6]$ $\therefore a * 0 = a = 0 * a \quad \forall a \in X$

Thus, 0 is the identity element for the given operation *.

An element $a \in X$ is invertible if there exists $b \in X$ such that a * b = 0 = b * a.

 $\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6 & \text{if } a+b\ge6 \end{cases}$

 $\Rightarrow a = -b \text{ or } b = 6 - a$

 $X = \{0, 1, 2, 3, 4, 5\}$ and $a, b \in X$. Then $a \neq -b$.

 $\therefore b = 6 - a$ is the inverse of a for all $a \in X$. Inverse of an element $a \in X$, $a \neq 0$ is 6 - a i.e., a - 1 = 6 - a.

Question 15:

Let
$$A = \{-1, 0, 1, 2\}$$
, $B = \{-4, -2, 0, 2\}$ and $f, g : A \to B$ be functions defined by $x^2 - x$, $x \in A$ and $g(x) = 2\left|x - \frac{1}{2}\right| - 1$, $x \in A$.
Are f and g equal?

Solution:

It is given that $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$

Also,
$$f, g: A \to B$$
 is defined by $x^2 - x$, $x \in A$ and $g(x) = 2\left|x - \frac{1}{2}\right| - 1, x \in A$
 $f(-1) = (-1)^2 - (-1) = 1 + 1 = 2$
 $g(-1) = 2\left|(-1) - \frac{1}{2}\right| - 1 = 2\left(\frac{3}{2}\right) - 1 = 3 - 1 = 2$
 $\Rightarrow f(-1) = g(-1)$
 $f(0) = (0)^2 - 0 = 0$
 $g(0) = 2\left|0 - \frac{1}{2}\right| - 1 = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0$
 $\Rightarrow f(0) = g(0)$

$$f(1) = (1)^{2} - 1 = 0$$

$$g(1) = 2\left|1 - \frac{1}{2}\right| - 1 = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(1) = g(1)$$

$$f(2) = (2)^{2} - 2 = 2$$

$$g(2) = 2\left|2 - \frac{1}{2}\right| - 1 = 2\left(\frac{3}{2}\right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(2) = g(2)$$

$$\therefore f(a) = g(a) \quad \forall a \in A$$

Hence, the functions f and g are equal.

Question 16:

Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is,

- A. 1
- B. 2
- C. 3 D. 4

Solution:

The given set is $A = \{1, 2, 3\}$.

The smallest relation containing (1,2) and (1,3) which are reflexive and symmetric but not transitive is given by,

 $R = \{(1,1), (2,2), (3,3), (1,2), (1,3), (2,1), (3,1)\}$

This is because relation R is reflexive as $\{(1,1), (2,2), (3,3)\} \in R$.

Relation *R* is symmetric as $\{(1,2),(2,1)\} \in R$ and $\{(1,3)(3,1)\} \in R$.

Relation *R* is transitive as $\{(3,1),(1,2)\} \in R$ but $(3,2) \notin R$.

Now, if we add any two pairs (3,2) and (2,3) (or both) to relation R, then relation R will become transitive.

Hence, the total number of desired relations is one.

The correct answer is A.

Question 17:

Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1, 2) is,

- A. 1
- B. 2
- C. 3 D 4

Solution:

The given set is $A = \{1, 2, 3\}$.

The smallest equivalence relation containing (1,2) is given by; $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$

Now, we are left with only four pairs i.e., (2,3),(3,2),(1,3) and (3,1).

If we odd any one pair $[say^{(2,3)}]$ to R_1 , then for symmetry we must $add^{(3,2)}$. Also, for transitivity we are required to add (1,3) and (3,1).

Hence, the only equivalence relation (bigger than R_1) is the universal relation.

This shows that the total number of equivalence relations containing (1,2) is two. The correct answer is B.

Question 18:

$$f(x) = \begin{cases} 1, \ x > 0 \\ 0, \ x = 0 \end{cases}$$

Let $f : R \to R$ be the Signum Function defined as [-1, x < 0] and $g : R \to R$ be the greatest integer function given by g(x) = [x], where [x] is greatest integer less than or equal to *x*. Then does *fog* and *gof* coincide in (0,1]?

Solution:

$$f(x) = \begin{cases} 1, \ x > 0\\ 0, \ x = 0\\ -1, \ x < 0 \end{cases}$$

It is given that $f: R \to R$ be the Signum Function defined as

Also $g: R \to R$ is defined as g(x) = [x], where [x] is greatest integer less than or equal to x. Now let $x \in (0,1]$,

$$[x] = 1_{if x = 1 and} [x] = 0_{if 0 < x < 1}.$$

$$\therefore fog(x) = f(g(x)) = f([x]) = \begin{cases} f(1), & \text{if } x = 1 \\ f(0), & \text{if } x \in (0,1) \end{cases} = \begin{cases} 1, & \text{if } x = 1 \\ 0, & \text{if } x \in (0,1) \end{cases}$$
$$gof(x) = g(f(x))$$
$$= g(1) \qquad [x > 0]$$
$$= [1] = 1$$

Thus, when $x \in (0,1)$, we have fog(x) = 0 and gof(x) = 1. Hence, fog and gof does not coincide in (0,1].

Question 19:

Number of binary operations on the set $\{a,b\}$ are

- A. 10
- **B.** 16
- C. 20
- D. 8

Solution:

A binary operation * on $\{a,b\}$ is a function from $\{a,b\} \times \{a,b\} \rightarrow \{a,b\}$

i.e., * is a function from $\{(a,a),(a,b),(b,a),(b,b)\} \rightarrow \{a,b\}$

Hence, the total number of binary operations on the set $\{a,b\}$ is $2^4 = 16$. The correct answer is B.